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Abstract 

Unplanned hospital readmissions are a key indicator of quality in healthcare and can lead to high 
unnecessary costs for the hospital due to additional required resources or reduced payments by insurers 
or governments. Predictive analytics can support the identification of patients at high-risk for 
readmission early on to enable timely interventions. In Australia, hysterectomies present the 2nd 
highest observed readmission rates of all surgical procedures in public hospitals. Prior research so far 
only focuses on developing explanatory models to identify associated risk factors for past patients. In 
this study, we develop and compare 24 prediction models using state-of-the-art sampling and ensemble 
methods to counter common problems in readmission prediction, such as imbalanced data and poor 
performance of individual classifiers. The application and evaluation of these models are presented, 
resulting in an excellent predictive power with under- and oversampling and an additional slight 
increase in performance when combined with ensemble methods. 
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1 Introduction 

The Australian Institute for Health and Welfare (AIHW) tracks 28-day unplanned readmission rates for 
seven surgical procedure groups, i.e. hip replacements, knee replacements, tonsillectomy and 
adenoidectomy, cataract surgery, appendectomy, prostatectomy, and hysterectomy (AIHW, 2017b). The 
service rate in Australia (i.e., number of separations per 1,000 population) for hysterectomies (3.3) is 
only surpassed by cataract surgeries (9.3). These procedures, however, show very low readmission rates 
overall (0.3%). Besides tonsillectomy and adenoidectomy that show readmission rates of 3.4% on 
average, hysterectomy procedures have the 2nd highest rate of unplanned readmissions in Australia 
(3.3%) (AIHW, 2017a). Research has shown that hysterectomies are association with a high 
complication risk, however, the influencing risk factors are not fully known (Daugbjerg et al., 2014).  In 
addition, Australia has one of the highest frequencies of hysterectomy procedures as compared to other 
OECD countries (262.2 procedures per 100,000 females) (OECD, 2018).  Thus, analyzing 
hysterectomies as one of the most frequent and risk-prone procedures for unplanned hospital 
readmissions using Australian healthcare data offers great potential for generating useful insights and 
furthermore reducing unnecessary costs.  

According to a systematic review by Artetxe et al. (2018) on predictive models for hospital readmission 
risk, machine learning methods can improve the prediction ability over traditional statistical 
approaches. Such contributions to this academic field are aimed at first aligning complex and sensitive 
information across multiple sources, using, among others, administrative, insurance, clinical, and 
government registry data. This information is thereafter used to identify patients in need of additional 
healthcare resources by means of various intervention methods (Billings et al., 2013). To identify 
patients at risk of readmission, predictive analytics has developed into a popular research area in 
medicine and healthcare management (Zhou et al., 2016; Kansagara et al., 2011). The task of 
readmission prediction presents multiple challenges that have to be dealt with during the data pre-
processing and analysis.  Since the population of readmitted cases is usually low with respect to non-
readmissions (3.3 % for hysterectomy in Australia on average), the analyst has to deal with an 
imbalanced class distribution. Furthermore, planned and unplanned readmissions need to be clearly 
separated as to avoid noise in the training set. While no universal definition for unplanned readmissions 
is available, the AIHW characterises them as “readmissions where the principal diagnosis indicates an 
adverse event.” (AIHW, 2017b). For this study, a readmission is defined as a revisit to the hospital that 
is directly related to the index admission, takes place in acute care, and where the time span between 
the discharge date of the index admission and the admission date of the revisit does not exceed 28 days. 

Although the importance of predictive analyses in Information Systems (IS) is apparent (Gregor, 2006; 
Shmueli and Koppius, 2011) and contributions of IS in healthcare have been numerously demonstrated 
in the past (Haried et al., 2017), research on predictive analytics in healthcare is still scarce in IS 
literature (Bardhan et al., 2015). Furthermore, while studies in the past rather focus on explanatory 
modeling and hypothesis testing, the importance and major differences of building powerful prediction 
models have recently become apparent (Shmueli and Koppius, 2011). In readmission prediction 
research in general, especially the initial conditions targeted in the Hospital Readmission Reduction 
Program (HRRP) (acute myocardial infarction, heart failure, and pneumonia) are addressed in a variety 
of studies that are, however, primarily conducted in the US (Weinreich et al., 2016; Baechle et al., 2017; 
Castillo et al., 2017; Amarasingham et al., 2010; Frizzell et al., 2017; Au et al., 2012). Readmissions in 
Australian hospitals, especially focusing on the AIHW procedure groups are a novel and promising 
research area that will increasingly affect the Australian healthcare system as unplanned readmissions 
are more and more focused by insurers and the government (Health Innovation & Reform Council, 
2013). This study presents a novel approach to identify patients at risk for 28-day readmission after a 
hysterectomy utilizing different sampling and ensemble methods. A dataset of 3,466 hysterectomy 
episodes at a private not-for-profit Australian hospital group is used to build and evaluate 24 different 
prediction models. The results of a literature review on common risk factors from previous research on 
predictive models for hospital readmissions in general as well as classification methods and their 
predictive power that are typically used in readmission prediction are used as a base for this study. 
Furthermore, the review indicates that diagnosis-specific prediction models perform better than general 
risk prediction models ([Anonymous], 2018). Thus, decision trees (DT), support vector machines 
(SVM), and artificial neural networks (ANN) are combined with under- and oversampling as well as 
bagging and boosting techniques to evaluate a potential increase in predictive performance through the 
use of sampling and ensemble methods. In addition to the general risk factors identified in previous 
research on predicting readmissions, disease-specific risk factors are identified in studies presenting 
explanatory models on hospital readmissions after hysterectomy. The process to build empirical models 
presented by Shmueli and Koppius (2011) is used to guide the subsequent analysis. The modeling section 
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of this paper is structured according to the process depicted in Table 1. Lastly, the implications and 
limitations of this study are presented.  

Goal 
Build and compare prediction models to identify patients at risk for 28-day 
readmission after hysterectomy utilizing sampling and ensemble methods 

Data collection & 
study design 

Observational data / retrospective study 

Data preparation 
& EDA 

3,466 hysterectomy episodes; readmission rate 4.8 % 

Variables 25 attributes  

Methods Decision tree / Artificial neural net / Support vector machine  

Evaluation Recall / AUC / F2-measure  

Table 1: Analysis process 

2 Theoretical Background 

2.1 Hospital Readmissions 

The Australian government defines readmissions as "unplanned and unexpected hospital 
readmissions to the same public hospitals within 28-days for selected surgical procedures" 
 (AIHW, 2017b). Although readmissions are a central theme in the Australian healthcare 
sector, criteria to specify whether an admission counts as a readmission vary among the 
different states or insurers. Rates are measured within a 28-day or 30-day time frame 
from the index admission. In Western Australia, an admission is labelled an unplanned 
readmission if the previous admission occurred within a time frame of 28 days and the 
patient is admitted for the same or a related condition or a complication following the 
index admission (Government of Western Australia, Department of Health, 2017). 
Since 2006, the Australian Institute of Health and Welfare (AIHW) has been tracking 
28-day readmission rates (AIHW, 2017b). Monitoring of unplanned readmission rates 
across Australia is executed through the instalment of the National Healthcare Agreement  
(NHA) which contains unplanned readmission rates as a quality of care indicator. The 
calculation for the report, however, is limited to public hospitals. Here, readmissions are 
defined by the following criteria that have to be fulfilled to qualify for the inclusion in the 
statistic (AIHW, 2017b): 

 The admission has to follow a separation from the same hospital where the patient 
was either treated with a knee replacement (TKA), hip replacement (THA), tonsillectomy and 
adenoidectomy (T&A), hysterectomy (HRT), prostatectomy (PRO), cataract surgery (CAT) or 
appendectomy (APP). 

 The second admission has to occur within 28 days of the previous separation. 

 A principal diagnosis has to have one of the following codes: T80/88, T98.3, E89,  
G97, H59, H95, I97, J95, K91, M96 or N99. These diagnosis codes include complications, 
sequelae of complications, and post-procedural disorders.  

For these procedures, unplanned readmission rates of 2.09% (APP), 0.32%  
(CAT), 1.92% (THA), 2.31% (TKA), 3.34% (hysterectomy), 2.65% (PRO), and 3.47% (T&A) can be 
observed in Australian hospitals on average (AIHW 2017a, p. 225). Excluded from 
penalisation are planned readmissions as well as obstetrical delivery, transplant surgery,  
maintenance, chemotherapy, rehabilitation, and non-acute readmissions for a scheduled 
procedure. If a hospital exceeds the readmission rate benchmark, which is calculated on 
the risk-adjusted national average for the conditions above, funding rates are reduced. 
The corresponding expected risk adjustment, to account for region specific populations,  
is calculated by taking several factors, such as the hospital specific distribution of patient's age, gender 
and previous conditions as well as clinical risk factors using data from 
the preceding three financial years, into account. In summary, the AIHW definition of 
readmissions explicitly excludes planned admissions, considers only a specific list of surgeries, and 
focuses on a 28-day period.  
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2.2 Imbalanced Data 

Imbalanced data, also known as skewed data, has a strong unequal distribution of the minority and 
majority classes (SUN et al., 2009). In the case of hospital readmissions, the minority class is 
represented by unplanned readmissions. The main issue with handling imbalanced data is that 
traditional classifiers tend to perform best with an equal class distribution while the relevant 
information from the minority class might be overlooked with regards to the majority class (SUN et al., 
2009). There are a number of different approaches to handle imbalanced data (Galar et al., 2012; SUN 
et al., 2009; Kotsiantis, 2007; Longadge and Dongre, 2013; Chawla, 2005; He and Garcia, 2009) that 
can either be grouped in algorithm approaches, data level approaches, or a combination of 
both. Algorithm approaches manipulate the classifier to give a higher attention to the minority class. 
Since adaptations of the classifier need expert knowledge of the algorithm and the data domain (SUN et 
al., 2009), this approach is not suitable for this study. Data level approaches, which are also known as 
external approaches (Haixiang et al., 2017), change the data dimensions and can be further 
distinguished into feature selection and resampling (Haixiang et al., 2017; Kotsiantis, 2007). The 
feature selection performed in this study is mainly based on risk factors derived from the literature. 
Resampling methods manipulate the number of entities to reduce the skew of the data. Resampling can 
be divided into undersampling and oversampling, where undersampling reduces the entities from the 
majority class, while oversampling creates additional entities of the minority class (Kotsiantis, 2007; 
Galar et al., 2012). From the variety of over- and undersampling methods presented in literature (Galar 
et al., 2012; Haixiang et al., 2017) this study focuses on the most prominent techniques, namely random 
undersampling and the synthetic minority oversample technique (SMOTE). Random undersampling, 
which is one of the most commonly applied undersampling techniques (Haixiang et al., 2017), is the 
process of randomly removing entities of the majority class to reduce the data imbalance (Galar et al., 
2012). The most commonly used oversampling technique is SMOTE (Chawla et al., 2011) and its 
derivations (Haixiang et al., 2017).  

2.3 Ensemble Learning 

Hybrid methods of predicting imbalanced data include cost-sensitive learning and ensemble 
learning. Cost-sensitive learning follows the approach of manipulating the algorithm to weight the 
minority class higher and improve the classifier performance. Cost-sensitive approaches have the 
downside that the actual costs of misclassification must be known (SUN et al., 2009). In this study, the 
costs of misclassification—namely, the costs of unplanned readmissions—are not known. Ensemble 
learning is performed when the results of several classifiers are combined to predict a future observation 
(Galar et al., 2012). Ensemble learning can either be performed by combining different classifiers or by 
applying variations of the same classifier (Haixiang et al., 2017). This study aims to benchmark the 
performance of traditional classifiers to single classifier ensembles. Single classifier ensembles are 
grouped into parallel ensembles (“bagging”) and iterative ensembles (“boosting”). Parallel ensembles 
train different base classifiers simultaneously, while iterative approaches train one base classifier after 
another (Haixia ng et al., 2017). Bagging, which is short for “bootstrapped aggregating,” is introduced 
by Breiman (1996) and combines several base classifiers into one classifier by bootstrapping the data 
into several different bags. Then, for each of the bags, the base classifier is trained and applied to the 
application set. Subsequently, the differently trained classifiers vote as to which class a new entity 
belongs, and a majority vote of the classifiers determines in which class the observation fits best. The 
most prominent boosting method, AdaBoost (“adaptive boosting”) (Freund and Schapire, 1997) is 
based on the principle of boosting introduced by Schapire (1990) and uses the base principle of 
improving the algorithm in every iteration to achieve a higher performance. Single classifier ensembles 
for imbalanced data combine either resampling methods or cost-sensitive approaches with the 
traditional ensemble methods, bagging or boosting (Galar et al., 2012). Combining resampling with 
traditional ensembles resamples the data in bagging approaches after bootstrapping, while AdaBoost-
based ensembles resample the data at each iteration before training the base classifier. This study 
focuses on random undersampling and SMOTE sampling. If undersampling is combined with bagging, 
the literature uses the term “underbagging” (Galar et al., 2012), while the combination of SMOTE 
sampling and bagging is referred to as “BaggingSMOTE” (Błaszczyński and Stefanowski, 2015). The 
combination of AdaBoost with random undersampling is called “RUSBoost” in the literature (Seiffert et 
al., 2008), and the combination of AdaBoost with SMOTE as SMOTEBoost 
(Lavračetal.,ÈChawlaetal.,È(Chawla et al., 2003). 



Australasian Conference on Information Systems  Eigner, Reischl, Bodendorf 
2018, Sydney  Predicting unplanned hospital readmissions after hysterectomy 

  5 

3 Data Analysis 

3.1 Goal Definition 

The goal of this study is to develop a prediction model that identifies patients at discharge with 
substantial risks of unplanned readmission to the hospital after hysterectomy. Since the data is 
imbalanced and this study aims to predict as many potential risk patients as possible, the receiver 
operating curve (ROC) in combination with the area under the curve (AUC) score is used. To identify 
whether a model proves sufficient, a target AUC score is defined. The AUC score of 0.50 can be described 
as random guessing, while an AUC score of 1.0 means that the prediction is 100% correct (Fawcett, 
2006). Models with good discrimination powers are models with AUC scores of at least 0.80 (Kleinbaum 
and Klein, 2010, p. 357). Thus, this study aims to achieve an AUC score above 0.80. This is also aligned 
with current prediction models, which have AUC scores between 0.53 and 0.83 (Zhou et al., 2016). 

3.2 Data Collection and Study Design 

This study uses observational data from a large not-for-profit private health-care group in Victoria 
containing clinical, demographic, and financial information from anonymized patient episodes between 
the years 2011 to 2015. In total, the dataset comprises 642,407 patient episodes, where each entity 
describes a single episode at the hospital. For each episode, 483 different attributes are provided, which 
can be categorized into social demographic (e.g., age and nationality), financial (e.g., hospital charges), 
medical (e.g., diagnoses and procedures), and hospital-related (e.g., admission ward, length of stay) 
factors. The diagnosis data is coded in an Australian modification of the 10th version of the International 
Classification for Diseases (ICD-10-AM). The World Health Organization introduced ICD to name global 
health trends and statistics and is the international standard for reporting diseases and health 
conditions (World Health Organization, 2018). The procedure data is coded in the Australian 
Classification of Health Interventions (ACHI). To extract all relevant episodes for the procedure groups 
under study, the respective ACHI codes provided by the AIHW are used. Patients who died before or 
after discharge (n = 10) from the hospital as well as patients who were discharged at their own risk (n = 
4) and patients who were admitted after December 3, 2015 (n = 75) are excluded from this dataset. Since 
unplanned readmissions are not directly flagged in the data, episodes that led to a readmission are 
marked as such, if the difference between the admission date of the revisit and discharge date of the 
episode is within the range of 0 to 28 days. Planned readmissions are excluded in this step. The final 
dataset counts a total of 3,466 hysterectomies. 166 episodes (4.8 %) lead to a 28-day readmission to the 
same hospital group.   

In addition to general risk factors derived from studies on predicting all-cause patient readmissions, 
studies providing explanatory models for procedure-specific readmissions are analysed to identify 
specific risk factors for hysterectomies. A summary of all potential risk factors according to the 
respective sources is illustrated in Table 2. 

Study 
Data / 

Patients 
Time-
frame 

Country Risk factors 
Proc-

edures 
Readmis
sion rate 

Kreuninger 
et al., 2018 

3,981 
(benign) 

60-day USA 
Type of procedure, perioperative 
complications 

L, A, V, 
R 

1.9 –  

3.5 % 

Lonky et 
al., 2017 

3,106 
(benign) 

90-day USA 
Race, type of procedure, blood loss, 
operative complications, length of 
stay 

L, A, V 3.5 % 

Philp et al., 
2017 

119 (cervix 
cancer) 

30-day Canada 
Age, operation time, blood loss, 
intraoperative complications 

L 5% 

Penn et al., 
2016 

40,580 
(benign) 

30-day 
USA 

(NSQIP) 
Medical and surgical complication L, A, V 2.8% 

Lee et al., 
2016 

1.649 
(benign + 
malignant) 

30-day USA 
Complications, prior abdominal 
surgeries, malignancy, length of stay, 
blood loss 

L, A, V 6% 

Fitch et al., 
2016 

21,926 30-day CCED 
Type of procedure (inpatient vs. 
outpatient) 

L, A, V 
2.1 – 
3.05% 
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Jennings et 
al., 2015 

8,890 
(benign) 

30-day 
USA 
(NSQIP) 

Comorbidities, substance abuse, 
operation time, complications 

L 3.1% 

Dessources 
et al., 2015 

41,196 
(benign + 
malignant) 

30-day 
USA  

(NSQIP) 
Complications, comorbidities, age L, A, V 

3.4 – 
6.1% 

Catanzarite 
et al., 2015 

21,228 
(benign) 

30-day 
USA 
(NSQIP) 

Complications, return to theatre, age, 
comorbidities, smoking, prior 
surgeries, operation time, status 
(inpatient vs. outpatient), length of 
stay 

L, A, V 
2.7 – 
3.8% 

Daugbjerg 
et al., 2014 

22,150 
(benign) 

30-day Denmark Socioeconomic status L, A, V 6% 

Liang et al., 
2013 

395 
(endometri
al cancer) 

90-day USA 
Length of stay, postoperative 
complications 

R 7.6% 

Summitt et 
al., 1994 

113 2 weeks USA Medication, complication, blood loss L, V 3.8 %. 

Table 2: Identified studies on readmission risk factors after a hysterectomy 

3.3 Data Preparation 

The next step of developing a prediction model is to prepare the data, which mainly includes data 
cleaning, handling missing values, and splitting the data (Shmueli and Koppius, 2011). The term “data 
cleaning” describes the process of detecting and removing data errors and inconsistencies. A way to 
identify unclean data is to perform data profiling, which uses metadata to discover errors in the data. 
Errors discovered can be illegal values, misspellings, missing values, varying value representations, and 
duplicates (Rahm and Do, 2000). Next, the data is split into training and validation sets. The training 
set is a part of the data that is used to train the prediction model, and the validation set is used to 
determine the performance of the model. For this study, a cross-validation approach with 10-fold 
validation is used.  

3.4 Exploratory Data Analysis 

The goal of the exploratory data analysis is to analyze the dataset visually and numerically to ensure that 
the data is suitable for the prediction model as well as reducing the dimensions (Shmueli and Koppius, 
2011). Because too many predictors can decrease the performance of a prediction model, the dimensions 
are systematically reduced in this step. Especially procedure and diagnosis data are reduced to relevant 
factors as well as redundancies within lengths of stay and admission dates are resolved. The numerical 
distribution gives an insight into how the two cohorts differ. While patients who were not readmitted 
visited the hospital 0.22 times on average, readmitted patients visited the hospital an average of 1.94 
times within the last three months. Additionally, the procedure “radical abdominal hysterectomy with 
radical excision of pelvic lymph nodes” (10% /6%) and “total abdominal hysterectomy with removal of 
adnexa” (26%/ 23%) show a higher readmission rate within the study group. Additionally, patients being 
readmitted stay longer in the hospital (6.5/6.07) and longer in the operating room (160/136) and have 
a higher number of diagnoses (2.43/2.13), complications (1.49/0.95) and procedures (5/4.32). 
Furthermore, readmitted patients more often have low haemoglobin levels (25 %/14%), have less 
histology performed (34%/40%) and are released from the hospital later in the day (57%/48%).  

3.5 Choice of Variables 

After reducing dimensions, the next step is to select which variables to use for the prediction model. Two 
factors are especially relevant for the variable selection. At first, the variables must have a measurement 
quality, which means variables that do not assist in predicting unplanned readmissions are not relevant 
for the model. The second factor is the ex-ante availability. This signifies that the predictor must be 
accessible at point of prediction. In this study, the parameter must be available at time of discharge 
(Shmueli and Koppius, 2011). A feature is seen as beneficial if it is correlated with the prediction flag but 
is not redundant to any other relevant feature (Yu and Liu, 2003). This means that the variables must 
have the ability to predict readmissions while they not being highly correlated with each other. Since 
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correlations above 0.70 are seen as highly correlated (Asuero et al., 2007), features with a correlation 
above 0.70 are removed. Additionally, in this step, variables that only include low information or no 
information are also excluded for predicting unplanned readmissions. Thus, columns only containing 
one constant value are removed as well as columns with a variance below 0.05. In regard to ex-ante 
availability, three additional features containing post-discharge information are removed since these 
factors are not accessible ex-ante. The resulting risk factors can be grouped into hospital-related and 
hospital-visit-related factors, socio-demographics, the patient history, as well as laboratory data. In 
summary, this leads to 25 different factors accessible at discharge. 

Attribute Type Description (dc = distinct count) 

Patient id Categorical  Patient unique identifier (dc = 3,462) 

Episode id Categorical  Unique episode identifier (dc = 3,446) 

Led_to_readmission Boolean  Label attribute to be predicted 

Admission year Categorical  dc = 5 (2011 - 2015) 

Admission ward Categorical  dc = 31 

Admission patient classification Categorical  dc = 20; type of patient (e.g., surgical, medical) 

Age Numeric  mean = 55.35; range = 21 - 98 

Blood usage Boolean Yes (13.3%) No (86.7%) 

Campus Categorical  dc = 6 

Cancer Boolean Yes (27.44%) No (72.56%) 

Complications Numeric  mean = 0.98; range = 0 - 9 

Diagnosis count Numeric  mean = 3.50; range = 0 - 10 

Discharge ward Categorical dc = 34 

Discharge patient classification Categorical  dc = 20; type of patient (e.g., surgical, medical) 

Haemoglobin low Boolean Yes (14.83%) No (85.17%) 

Histology Boolean Yes (39.47%) No (60.53%) 

Hysterectomy procedure Categorical dc = 14;  

Length of stay Numeric  mean = 5.10; range = 0 - 69 

Metastatic cancer Boolean Yes (7.59%) No (92.41%) 

Procedure count Numeric mean = 4.35; range = 1 – 10 

Separation after 10am Boolean  Yes (48.21%) No (51.79%) 

Total number of beds Numeric mean = 2.32; range = 0 – 11  

Total number of wards Numeric mean = 1.03; range = 0 – 5  

Total time in theatre Numeric mean = 137.48; range = 0 – 771 

Visits past 6 months Numeric mean = 0.49; range = 0 – 27  

Table 3: Final feature set 

3.6 Choice of Potential Methods 

Next, it must be determined which algorithms are used. According to Shmueli and Koppius (2011) either 
data-driven, shrinkage, or ensemble methods can be used. Based on the literature review, combinations 
of resampling with bagging and boosting show different strengths, yet there is no way to determine 
which of the algorithms are most suitable for predicting unplanned readmissions. Underbagging is used 
in the only study incorporating the problem of imbalanced data to predict unplanned hospital 
readmissions, while RUSBoost is similar to SMOTEBoost, showing performance improvement in many 
cases. Yet the most comprehensive study of Galar et al. (2012) highlights that a combination of SMOTE 
and bagging is the best bagging approach. This is why this study applies SMOTEBoost, BaggingSMOTE, 
underbagging, and RUSBoost to the data. Since all of these ensembles are combinations of either 
bagging or boosting with random undersampling or SMOTE-sampling, these components are also tested 
in combination with the base classifier. The base classifiers applied are the most frequently used 
classifiers in combination with ensemble learning— namely, DT, SVM, and ANN.  
This leads to 24 different combinations being benchmarked within this study. First, the base classifiers 
DT, SVM, and ANN are applied; next, the traditional ensemble methods AdaBoost and bagging are 
applied in combination with them. Next, the base classifiers are benchmarked in combination with 
random undersampling, underbagging, and RUSBoost. Finally, models incorporating oversampling are 
applied (namely, SMOTE-sampling, BaggingSMOTE, and SMOTEBoost). RUS, SMOTE-sampling, and 
underbagging are based on the library ImbalancedLearn, which is an extension of Scikit-Learn  
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(Lemaitre et al., 2016). For RUSBoost and SMOTEBoost, the algorithms developed by Johnson (2017) 
are utilized, which are based on the Scikit-Learn implementation of AdaBoost. Because the ANN 
implementation of Scikit-Learn does not support class weighting (which is necessary to apply boosting 
approaches to the data) ANN cannot be applied in combination with AdaBoost, RUSBoost, and 
SMOTEBoost. This leads to a benchmark of 24 different algorithms to predict unplanned hospital 
readmissions. 

3.7 Evaluation, Validation, and Model Selection  

The next step is to validate and select the best model. To evaluate the models, accuracy is usually used 
as a performance measure. For validation, Shmueli and Koppius (2011) state that the performance can 
be measured by applying the model to a holdout set or by using a cross-validation approach. This study 
uses a tenfold cross validation. Finally, as part of the model selection, different predictors should be 
assed to improve the model performance. To compare the different results, the data is finally prepared 
to fit the need of the base classifiers. Thus, the performances of the 24 models are assessed and 
evaluated. For all models, a random seed is used to make the results reproducible. The seed is set to 11 
and ensures that the retraining of a model with the same parameters shows identical results. For each 
classifier, a grid search is performed to attain the best parameter settings. For the DT, a maximum depth 
of 8, the gini index as the split criterion and the default setting for selecting the best split is chosen. The 
SVM is implemented using the support vector classification (SVC) algorithm with a radial basis function 
(RBF) kernel, setting the penalty parameter C to 32768 and the gamma to 0.000488. The ANN 
implementation utilizes the Multi-layer Perceptron (MLP) classifier with 8 neurons in the hidden layer, 
the lbfgs solver for weight optimization, the rectified linear unit (relu) function as the activation 
function, and an alpha of 0.01. For evaluation, we include the area under the curve (AUC) score, which 
presents a popular measure in healthcare analyses. In addition, we investigate the recall, which 
represents the ratio of all correctly predicted readmissions (predicted positives) to the true readmissions 
(true positives). To be able to easily track the cost of our prediction models with regards to the false 
positive rate, the F-score is included in the evaluation that considers both precision and recall. For this 
measure, the β is set to 2, to allow a higher weight for the recall (Sattar et al., 2006).  

Overall, underbagged decision trees show the most promising results for identifying unplanned 
readmissions with an AUC of 0.94, detecting almost all positive cases of the data set. On the other hand, 
bagging without prior resampling leads to an unsatisfactory predictive power across all three classifiers. 
Here, the issue of imbalanced data becomes apparent, where the prediction models tend to sort all 
examples to the majority class. Surprisingly, a standard SVM with no prior sampling, bagging, or 
boosting approach leads to a high AUC score of 0.87, whereas sampling and ensemble methods rather 
worsen the results. Table 4 summarizes the results for each prediction model, where models with an 
AUC > 0.9, AUC > 0.75 and AUC < 0.6 are highlighted in green, orange and red respectively. The best 
and worst models are highlighted in bold in addition. 

 Decision Tree SVM Neural Net 

 AUC Recall F2 AUC Recall F2 AUC Recall F2 

Standard 0.73 0.49 0.48 0.87 0.83 0.62 0.55 0.10 0.12 

RUS  0.93 0.97 0.70 0.78 0.77 0.44 0.70 0.63 0.34 

SMOTE  0.91 0.92 0.69 0.84 0.78 0.59 0.71 0.63 0.36 

Bagging 0.68 0.38 0.40 0.51 0.02 0.02 0.5 0 0 

Underbagged 0.94 0.99 0.71 0.81 0.72 0.53 0.73 0.67 0.39 

Overbagged 0.93 0.95 0.71 0.62 0.28 0.27 0.79 0.65 0.54 

AdaBoost 0.69 0.40 0.41 0.5 0 0 0.5 0 0 

RUS Boost 0.93 0.96 0.70 0.5 0 0 0.5 0 0 

Smote Boost 0.68 0.40 0.40 0.5 0 0 0.5 0 0 

Table 4: Model evaluation 

4 Conclusion 

We conclude that the task of identifying patients at risk of readmission is highly complex and risk factors 
depend heavily on the presented context. Furthermore, the issue of imbalanced data and the poor 
performance of individual classifiers need to be considered in readmission prediction. Due to these 
restrictions, we present and compare prediction models to determine readmissions after a hysterectomy 
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procedure utilizing both sampling and ensemble methods. To this end, individual classifiers with no 
prior sampling, individual classifiers using under- and oversampled data, as well as bagged and boosted 
classifiers with and without prior sampling are built and evaluated. This way, the suitability of sampling 
and ensemble methods for the task at hand is analyzed by investigating a potential increase in predictive 
performance. Another advantage of our approach is the inclusion of both empirical evidence from past 
studies to construct relevant attributes as well as the investigation of all variables already collected 
onsite. This way, the resulting feature set is developed rigorously while keeping an open mind about 
further relevant risk factors not yet considered in the past. Overall, 24 prediction models are evaluated 
performing with AUC scores ranging from 0.5 to 0.94. Decision trees show the overall best performance 
considering all evaluation metrics. Support vector machines still yield satisfactory AUC rates of 
maximum 0.87 while neural nets perform considerably poorly with a maximum AUC score of 0.79. By 
including the F2-measure into the evaluation metrics, the cost of correct predictions can also be 
implicitly observed. Overall, combining RUS and bagging with decision trees are recommended for this 
context. The results indicate that the influence of sampling is higher than performing bagging or 
boosting, as the ensemble methods only slightly increase the predictive performance after sampling. 

The implications of this study are evident for research and practice. With unplanned hospital 
readmissions as a key indicator of healthcare quality and associated unnecessary costs, the early 
identification of high-risk patients can support timely interventions to reduce avoidable readmission. 
This offers the opportunity for cost-reduction and an increased quality of healthcare services for 
hospitals and practitioners. On the other hand, this study gives an indication of the suitability of 
implementing ensemble methods in research and practice. As the number of studies investigating 
Australian healthcare data in general and readmission prediction after hysterectomies specifically is still 
limited, this study addresses an important research gap that can motivate further research in this area. 
Nevertheless, identifying patients at risk of readmission is a continuously challenging task due to the 
individual factors that influence patient care outcome in different healthcare settings.  

Lastly, some limitations of this study also need to be mentioned. The data used to develop the predictive 
models in this paper are extracted retrospectively from a single private hospital group comprising 
multiple campuses in Australia. Furthermore, due to a lot of missing values, many features were 
excluded and thus didn’t provide additional substantial findings on relevant risk factors. As a result, 
potentially important features (e.g., BMI) also could not be harnessed. Finally, domain experts (e.g., 
gynaecologists) should be consulted for a qualitative evaluation and interpretation of the results in 
future studies. This way, the suitability of the final feature set can be further strengthened or expanded.  
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